Perspectivas Farmacológicas Futuras en el Tratamiento de la Degeneración Macular Relacionada a la Edad (DMRE) Neovascular. Parte 1: Fármacos en Estudios Clínicos.

Miguel Leonardo Rodíguez Guanare

Resumen


Objetivos: Presentar una revisión de los nuevos y posibles objetivos de tratamiento farmacológicos para la degeneración macular relacionada a la edad neovascular y el estado de los fármacos en estudios clínicos.
Diseño del estudio: Revisión de tema.
Métodos: Se realizó una búsqueda de la literatura electrónica disponible en EMBASE, PUBMED y Google Scholar acerca del 

tema, y se complementa con la información encontrada en www.clinicaltrials.gov y la plataforma de registros internacionales de ensayos clínicos de la O.M.S. Se procedió a sistematizar la información y se presenta en forma estructurada.
Conclusiones: Las nuevas opciones terapéuticas para la degeneración macular relacionada a la edad neovascular proporcionan múltiples objetivos farmacológicos, los cuales se alcanzan realizando modifi caciones a moléculas ya elaboradas o con nuevos fármacos los cuales pueden actuar tanto como terapia adjunta a los actuales medicamentos antiangiogénicos (anti VEGF) mejorando su efi cacia o como nuevas opciones sustitutivas. Meritorio destacar la vía de la tirosina-quinasa, la cual había sido abordada con los existentes anti VEGF, ahora se presentan nuevas opciones terapéuticas que actúan corriente abajo. Diversos fármacos se encuentran en estudios de efi cacia parcial, merecen especial mención Fovista® y conbercept de los cuales ya se encuentran en desarrollo estudios fase III.


Palabras clave


Degeneración macular relacionada a la edad (DMRE) neovascular, factor de crecimiento endotelial vascular (VEGF)

Texto completo:

PDF

Referencias


Smith AG, Kaiser PK. Emerging treatments for wet age-related macular degeneration. Expert Opin Emerg Drugs 2014;19:157–64. 2. Chong V. Age-related macular degeneration : Current treatment options. Prescriber 2014;4:25–8.

Wang Q, Li T, Wu Z, Wu Q, Ke X, Luo D, et al. Novel VEGF decoy receptor fusion protein conbercept targeting multiple VEGF isoforms provide remarkable anti-angiogenesis eff ect in vivo. PLoS One 2013;8:e70544.

Rodríguez - Perspectivas farmacológicas y DMRE

Li X, Xu G, Wang Y, Xu X, Liu X, Tang S, et al. Safety and Effi cacy of Conbercept in Neovascular Age-Related Macular Degeneration: Results from a 12-Month Randomized Phase 2 Study: AURORA Study. Ophthalmology 2014:30;1–8. 5. Oh H, Takagi H, Takagi C, et al. Th e potential angiogenic role of macrophages in the formation of choroidal neovascular membranes. Invest Ophthalmol Vis Sci 1999;40:1891–1898 6. Jin M, He S, Worpel V, Ryan SJ, Hinton DR. Promotion of adhesion and migration of RPE cells to provisional extracellular matrices by TNF-alpha. Invest Ophthalmol Vis Sci 2000;41:4324–4332 7. Yang P, McKay BS, Allen JB, Jaff e GJ. Eff ect of NF-kappa B inhibition on TNF-alpha-induced apoptosis in human RPE cells. Invest Ophthalmol Vis Sci 2004;45:2438–2446. 8. Yang P, Wiser JL, Peairs JJ, et al. RPE expression of cell survival factors. Invest Ophthalmol Vis Sci 2005;46:1755–1764. 9. Th eodossiadis PG, Liarakos VS, Sfi kakis PP, Vergados I a, Th eodossiadis GP. Intravitreal administration of the anti-tumor necrosis factor agent infl iximab for neovascular age-related macular degeneration. Am J Ophthalmol 2009;147:825–30, 830.e1. 10. Sasore T, Reynolds AL, Kennedy BN. Retinal Degenerative Diseases. Ash JD, Grimm C, Hollyfi eld JG, Anderson RE, LaVail MM, Bowes Rickman C, editors. New York, NY: Springer New York; 2014;801:805–11. 11. Engelman J a, Luo J, Cantley LC. Th e evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet 2006;7:606–19. 12. Scott EN, Meinhardt G, Jacques C, Laurent D, Th omas AL. Vatalanib: the clinical development of a tyrosine kinase inhibitor of angiogenesis in solid tumours. Expert Opin Investig Drugs 2007;16:367–79 13. Rani S, Trivandrum J. Drops for DMRE. Kerala Journal of ophthalmology. 2009;21: 182-85. 14. Janes MR, Limon JJ, So L, Chen J, Lim RJ, Chavez M a, et al. Eff ective and selective targeting of leukemia cells using a TORC1/2 kinase inhibitor. Nat Med 2010;16:205–13. 15. Shor B, Gibbons JJ, Abraham RT, Yu K. Targeting mTOR globally in cancer: Thinking beyond rapamycin.Cell Cyle 2009;3831–7. 16. Xue Q, Hopkins B, Perruzzi C, Udayakumar D, Sherris D, Benjamin LE. Palomid 529, a novel small-molecule drug, is a TORC1/TORC2 inhibitor

that reduces tumor growth, tumor angiogenesis, and vascular permeability. Cancer Res 2008;68:9551–7. 17. Dalal M, Jacobs-el N, Nicholson B, Tuo J, Chew E, Chan C, et al. Subconjunctival Palomid 529 in the treatment of neovascular age-related macular degeneration. Graefe’s Arch Clin Exp Ophthalmol 2013;2705–9. 18. Humar R, Kiefer FN, Berns H, Resink TJ, Battegay EJ. Hypoxia enhances vascular cell proliferation and angiogenesis in vitro via rapamycin (mTOR)-dependent signaling. FASEB J 2002;16:771–80. 19. Dejneka NS, Kuroki AM, Fosnot J, Tang W, Tolentino MJ, Bennett J. Systemic rapamycin inhibits neovascularization in mice retinal and choroidal. Mol Vis 2004;22;10:964-72. 20. Sharma A. Newer Molecular Targets For the Management of DME A number of candidates could lead to new treatments . Evidence From Clinical Trials of iCo-007. 2013;1–10. 21. Ricart AD, Tolcher AW, Liu G, Holen K, Schwartz G, Albertini M, et al. Volociximab, a chimeric monoclonal antibody that specifically binds alpha5beta1 integrin: a phase I, pharmacokinetic, and biological correlative study. Clin Cancer Res 2008 1;14:7924–9. 22. Kim S, Bell K, Mousa SA, Varner JA. Regulation of angiogenesis in vivo by ligation of integrin a5h1with the central cell-binding domain of fi bronectin. Am J Pathol 2000;156:1345-62. 23. Patterson DM, Rustin GJS, Serradell N, Rosa E, Bolós J. Combretastatin A-4 phosphate. Drugs Future 2007;32:1025. 24. Chang LK. Overview of Emerging Molecular Th erapies for Neovascular DMRE. Retinal Physician 2014;001:1-5. 25. Maines LW, French KJ, Wolpert EB, Antonetti D a, Smith CD. Pharmacologic manipulation of sphingosine kinase in retinal endothelial cells: implications for angiogenic ocular diseases. Invest Ophthalmol Vis Sci 2006 ;47:5022-31. 26. Xie B, Shen J, Dong A, Rashid A, Stoller G, Campochiaro PA. Blockade of Sphingosine1phosphate Reduces Macrophage Influx and Retinal and Choroidal Neovascularization. J Cell Physiol 2010;218:192–8. 27. Campochiaro PA, Glaser BM. Platelet-derived growth factor is chemotactic for human retinal pigment epithelial cells. Arch Ophthalmol 1985;103:576-9. 28. Choudary P, Chen W, Hunt R. Production of

Revista Sociedad Colombiana de Oftalmología - Volumen 48 (1) Enero - Marzo 2015

platelet-derived growth factors by interleukin-1b and transforming growth factor- b stimulate RPE cells and leads to contraction of collagen gels. Invest Ophthalmol Vis Sci 1997;38:824-33. 29. Li X, Ponten A, Aase K, et al. PDGF-C is a new protease-activated ligand for the PDGF alphareceptor. Nat Cell Biol 2000;2:302-9. 30. Claesson-Welsh L, Eriksson A, Westermark B, et al. cDNA cloning and expression of the human A-type platelet derived growth factor receptor establishes structure similarity to the B-type PDGF receptor. Proc Natl Acad Sci USA 1989;86:4917-21. 31. Adamis AP. Th e rationale for drug combinations in age-related macular degeneration. Retina 2009;29:S42e4.64. 32. Sundaram P, Kurniawan H, Byrne ME, Wower J. Th erapeutic RNA aptamers in clinical trials. Eur J Pharm Sci 2013;48:259–71 33. Hanout M, Ferraz D, Ansari M, Maqsood N, Kherani S, Sepah YJ, et al. Th erapies for neovascular agerelated macular degeneration: current approaches and pharmacologic agents in development. Biomed Res Int 2013;2013:830-837. 34. Holz FG, Schmitz-valckenberg S, Fleckenstein M. Recent developments in the treatment of age-related macular degeneration. J Clin Invest 2014;124:1430-8 35. Ni Z, Hui P. Emerging pharmacologic therapies for wet age-related macular degeneration. Ophthalmologica 2009;223:401–10. 36. Ni X, Castanares M, Mukherjee A , Lupold SE. Nucleic acid aptamers: clinical applications and promising new horizons. Curr Med Chem 2012;18:4206–14. 37. Biesecker G, Dihel L, Enney K, Bendele R a. Derivation of RNA aptamer inhibitors of human complement C5. Immunopharmacology 1999;42:219–30. 38. Castanotto D, Rossi JJ. Th e promises and pitfalls of RNA-interference-based therapeutics. Nature 2009;457:426–33. 39. Wang J, Lu Z, Wientjes MG, Au JL-S. Delivery of siRNA therapeutics: barriers and carriers. AAPS J 2010;12:492–503. 40. Tang G. siRNA and miRNA: an insight into RISCs. Trends Biochem Sci 2005;30:106–14. 41. Grimm D. Small silencing RNAs: state-of-the-art. Adv Drug Deliv Rev 2009;61:672–703.

Brafman A, Mett I, Shafi r M, Gottlieb H, Damari G, Gozlan-Kelner S, et al. Inhibition of oxygeninduced retinopathy in RTP801-defi cient mice. Invest Ophthalmol Vis Sci 2004;45:3796–805. 43. Shoshani T, Faerman A, Mett I, Tenne T, Gorodin S, Moshel Y, et al. Identifi cation of a Novel HypoxiaInducible Involved in Apoptosis Identifi cation of a Novel Hypoxia-Inducible Factor 1Responsive Gene , RTP801 , Involved in Apoptosis. Mol Cell Biol 2002;22:2282 – 2293. 44. Jin H-O, An S, Lee H-C, Woo S-H, Seo S-K, Choe T-B, et al. Hypoxic condition- and high cell density-induced expression of Redd1 is regulated by activation of hypoxia-inducible factor1alpha and Sp1 through the phosphatidylinositol 3-kinase/Akt signaling pathway. Cell Signal 2007;19:1393–403. 45. Nguyen QD, Schachar R a, Nduaka CI, Sperling M, Basile a S, Klamerus KJ, et al. Phase 1 dose escalation study of a siRNA targeting the RTP801 gene in age-related macular degeneration patients. Eye (Lond) 2012;26:1099–105. 46. Whitehead K a, Langer R, Anderson DG. Knocking down barriers: advances in siRNA delivery. Nat Rev Drug Discov 2009;8:129–38. 47. Perkel JM. Update AT. RNAi THERAPEUTICS: 2007;454–6. 48. Garba AO, Mousa S a. Bevasiranib for the treatment of wet, age-related macular degeneration. Ophthalmol Eye Dis 2010;2:75–83. 49. Ambati J. Age-related macular degeneration and the other double helix. Th e Cogan Lecture. Invest Ophthalmol Vis Sci 2011;52:2165–9. 50. Kaiser PK, Symons RCA, Shah SM, Quinlan EJ, Tabandeh H, Do D V, et al. RNAi-based treatment for neovascular age-related macular degeneration by Sirna-027. Am J Ophthalmol 2010;150:33–39. 51. Ferrara N, Gerber H-P, LeCouter J. Th e biology of VEGF and its receptors. Nat Med 2003;9:669–76. 52. Carmeliet P, Moons L, Luttun a, Vincenti V, Compernolle V, De Mol M, et al. Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions. Nat Med 2001;7:575–83. 53. Dias JR, Bu E, Maia M, Penha FM, Farah ME. Cytokines in neovascular age-related macular degeneration : fundamentals on targeted combination therapy. Br J Ophthalmol 2011;95:1631-8.


Enlaces refback

  • No hay ningún enlace refback.


Copyright (c) 2018 Miguel Leonardo Rodíguez Guanare

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial 4.0 Internacional.