On the interpretation of the evidence obtained by quantitative studies of health research

Andrés Fandiño-Losada

Texto completo:

PDF

Referencias


Pearl J, Glymour M, Jewell NP. 2016 Causal Inference in Statistics: A Primer (Wiley, New York).

Rothman KJ, Greenland S. Causation and causal inference in epidemiology. Am J Public Health 2005; 95(S1): S144-S150.

Imai K, King G, Stuart EA. Misunderstandings between experimentalists and observationalists about causal inference. J R Stat Soc Series A (statistics in society) 2008; 171:481-502.

Rothman KJ, Greenland S, Lash T L(Eds.). 2008 Modern epidemiology.(Lippincott Williams & Wilkins).

Collins R, MacMahon S. Reliable assessment of the effects of treatment on mortality and major morbidity, I: clinical trials. The Lancet 2001; 357:373-380.

MacMahon S, Collins R. Reliable assessment of the effects of treatment on mortality and major morbidity, II: observational studies. The Lancet 2001;357: 455-462.

Szklo M, Nieto J. 2012 Epidemiology. (Jones & Bartlett Publishers).

Delgado-Rodriguez M, Llorca J. Bias. J Epidemiol Community Health 2004; 58: 635-641.

Höfl er M. Causal inference based on counterfactuals. BMC medical research methodology 2005 5(1): 1.

Gluud LL. Bias in clinical intervention research. Am J Epidemiol 2006;163:493-501.

Frangakis CE, Rubin DB . Addressing complications of intention-to-treat analysis in the combined presence of all-or-none treatment-noncompliance and subsequent missing outcomes. Biometrika 1999;86:365-379.

Guyatt GH, Haynes RB, Jaeschke R Z, Cook DJ, Green L, Naylor CD, et al. Evidence-Based Medicine Working Group. Users’ guides to the medical literature: XXV. Evidence-based medicine: principles for applying the users’ guides to patient care. JAMA 2000;284:1290-1296.

de Irala J, Martínez-González M Á, Grima FG. ¿Qué es una variable de confusión?. Medicina Clínica 2001;117:377-385.

McNamee R. Regression modelling and other methods to control confounding. J Occup Env Med 2005; 62:500-506.

Hernán MA, Hernández-Díaz S, Werler MM, Mitchell AA. Causal knowledge as a prerequisite for confounding evaluation: an application to birth defects epidemiology. Am J Epidemiol 2002;155:176-184.

Schisterman EF, Cole SR, Platt RW. Overadjustment bias and unnecessary adjustment in epidemiologic studies. Epidemiology (Cambridge, Mass.) 2009;20:488.

Cole SR, Platt RW, Schisterman EF, Chu H, Westreich D, Richardson D, Poole C. Illustrating bias due to conditioning on a collider. Int J Epidemiol 2010;39:417-420.

Bosco JL, Silliman RA, Th win SS, Geiger AM, Buist DS, Prout MN, et al. A most stubborn bias: no adjustment method fully resolves confounding by indication in observational studies. J Clin Epidemiol 2010;63:64-74.

Heinze G, Jüni P. An overview of the objectives of and the approaches to propensity score analyses. Eur Heart J 2011;32:1704.

Stuart EA. Matching methods for causal inference: A review and a look forward. Statistical science: a review. Stat Sci 2010; 25: 1.

Shrier I, Boivin JF, Steele RJ, Platt RW, Furlan A, Kakuma R, et al . Should meta-analyses of interventions include observational studies in addition to randomized controlled trials? A critical examination of underlying principles. Am J Epidemiol 2007; 166:1203-1209.


Enlaces refback

  • No hay ningún enlace refback.


Copyright (c) 2017 Revista Sociedad Colombiana de Oftalmología

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial 4.0 Internacional.